Unsupervised feature extraction with autoencoder trees

نویسندگان

  • Ozan Irsoy
  • Ethem Alpaydin
چکیده

The autoencoder is a popular neural network model that learns hidden representations of unlabeled data. Typically, singleor multilayer perceptrons are used in constructing an autoencoder, but we use soft decision trees (i.e., hierarchical mixture of experts) instead. Such trees have internal nodes that implement soft multivariate splits through a gating function and all leaves are weighted by the gating values on their path to get the output. The encoder tree converts the input to a lower dimensional representation in its leaves, which it passes to the decoder tree that reconstructs the original input. Because the splits are soft, the encoder and decoder trees can be trained back to back with stochastic gradient-descent to minimize reconstruction error. In our experiments on handwritten digits, newsgroup posts, and images, we observe that the autoencoder trees yield as small and sometimes smaller reconstruction error when compared with autoencoder perceptrons. One advantage of the tree is that it learns a hierarchical representation at different resolutions at its different levels and the leaves specialize at different local regions in the input space. An extension with locally linear mappings in the leaves allows a more flexible model. We also show that the autoencoder tree can be used with multimodal data where a mapping from one modality (i.e., image) to another (i.e., topics) can be learned. © 2017 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images

Histopathology images are crucial to the study of complex diseases such as cancer. The histologic characteristics of nuclei play a key role in disease diagnosis, prognosis and analysis. In this work, we propose a sparse Convolutional Autoencoder (CAE) for fully unsupervised, simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei...

متن کامل

Detection of Pitting in Gears Using a Deep Sparse Autoencoder

In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised ma...

متن کامل

Unsupervised Feature Learning for Audio Analysis

Identifying acoustic events from a continuously streaming audio source is of interest for many applications including environmental monitoring for basic research. In this scenario neither different event classes are known nor what distinguishes one class from another. Therefore, an unsupervised feature learning method for exploration of audio data is presented in this paper. It incorporates the...

متن کامل

Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly,...

متن کامل

Cross-modal Sound Mapping Using Deep Learning

We present a method for automatic feature extraction and cross-modal mapping using deep learning. Our system uses stacked autoencoders to learn a layered feature representation of the data. Feature vectors from two (or more) different domains are mapped to each other, effectively creating a cross-modal mapping. Our system can either run fully unsupervised, or it can use high-level labeling to f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 258  شماره 

صفحات  -

تاریخ انتشار 2017